首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21361篇
  免费   1333篇
  国内免费   727篇
电工技术   465篇
综合类   2248篇
化学工业   3351篇
金属工艺   1295篇
机械仪表   1142篇
建筑科学   5560篇
矿业工程   511篇
能源动力   295篇
轻工业   1131篇
水利工程   555篇
石油天然气   880篇
武器工业   183篇
无线电   913篇
一般工业技术   2384篇
冶金工业   1632篇
原子能技术   501篇
自动化技术   375篇
  2024年   17篇
  2023年   132篇
  2022年   304篇
  2021年   404篇
  2020年   420篇
  2019年   317篇
  2018年   365篇
  2017年   472篇
  2016年   510篇
  2015年   640篇
  2014年   1130篇
  2013年   1001篇
  2012年   1273篇
  2011年   1596篇
  2010年   1259篇
  2009年   1224篇
  2008年   1173篇
  2007年   1419篇
  2006年   1480篇
  2005年   1284篇
  2004年   1049篇
  2003年   1008篇
  2002年   893篇
  2001年   748篇
  2000年   625篇
  1999年   530篇
  1998年   393篇
  1997年   391篇
  1996年   324篇
  1995年   259篇
  1994年   203篇
  1993年   131篇
  1992年   125篇
  1991年   84篇
  1990年   72篇
  1989年   51篇
  1988年   23篇
  1987年   23篇
  1986年   10篇
  1985年   4篇
  1984年   8篇
  1983年   10篇
  1982年   6篇
  1980年   9篇
  1979年   1篇
  1974年   1篇
  1964年   3篇
  1963年   1篇
  1959年   15篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Powering wearable bioelectronics with decent skin conformability and wearing comfort is highly desired. Fiber batteries could provide an attractive alternative to traditional rigid ones and present a compelling solution to this problem. In this review, we will discuss the various classes of fiber batteries, including lithium batteries, zinc batteries, and other types of fiber batteries. We will then report the latest research progress on each battery category through its working mechanism, materials usage, structure design, and wearable applications. Finally, we provide insights into current challenges and future applications of fiber batteries, aiming to promote the development of low-cost and high-performance fiber battery technologies for wearable bioelectronics.  相似文献   
2.
Internal stability assessment of geosynthetic-reinforced soil structures (GRSSs) has been commonly carried out assuming plane-strain conditions and dry backfills. However, failures of GRSSs usually show three-dimensional (3D) features and occur under unsaturated conditions. A procedure based on the kinematic limit-analysis method is proposed herein to assess 3D effects and the role of steady unsaturated infiltration on the required geosynthetic strength for GRSSs. A suction stress-based framework is used to describe the soil stress behavior under steady unsaturated infiltration. Based on the principle of energy-work balance, the required geosynthetic strength is determined. A comparison analysis with the prior research is conducted to verify the developed method. Two kinds of backfills, i.e., high-quality backfill and marginal backfill, are considered for comparison in this work. It is shown that accounting for 3D effects and the role of unsaturated infiltration considerably reduces the required geosynthetic strength. The 3D effects are primarily affected by the width-to-height ratio of GRSSs, and the contribution of unsaturated infiltration is mainly influenced by the soil type, flow rate, GRSS's height, and location of the water table.  相似文献   
3.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   
4.
The freeze–thaw cycling damages the soil structure, and the shear performance of soil are degraded. A series of tests on lime–soil(L–S) and fiber–lime–soil(F–L–S), including freeze–thaw test, the triaxial compression test, nuclear magnetic resonance (NMR) test and scanning electron microscope (SEM) test, were completed. The test results showed that fiber reinforcement changed the stress–strain behavior and failure pattern of soil. The cohesion and internal friction angle of soil gradually decreased with the increase of freeze–thaw cycles (F–T cycles). The pore radius and porosity of soil increased, while the micro pore volume decreased, and the small pore volume, medium pore volume and large pore volume increased, and the large pore volume had a little variation after 10 F–T cycles. The number of pores of F–L–S was less than L–S, demonstrating that the addition of fiber helped to reduce the pore volume. The interweaved fibers limited the development and the connection of cracks. By means of the spatial restraint effect of fiber on the soil and the friction action between fiber and soil, the shear performances and freeze–thaw durability of F–L–S better were than that of L–S.  相似文献   
5.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   
6.
本文介绍了光纤光栅技术在测力锚杆上的应用,并且基于常用托盘的力学结构,增大了托盘内部的空间、设计了与之相连接的金属保护套筒使之成为一体式结构,从而有效地保护了光纤测力锚杆的主体结构。  相似文献   
7.
This paper presents results from a second stage of an experimental study of the dependence of steel fibers distribution along RFC prismatic specimens on the conventional reinforcement ratio and on the total amount of fibers in the concrete mix. The experimental program included two types of prismatic specimens with 30- and 60- kg/m3 of hooked-end steel fibers. Each specimen was sawed into equal segments and the numbers of fibers appearing at the cross-sections were counted and used for a further statistical analysis. This analysis comprised calculations of the average value and standard deviation of a non-dimensional variable, which represents the distribution of the total steel along the specimen. They were used to calibrate a theoretical model, which had been previously proposed by the authors. The test results showed reasonable to good agreement with the theoretical model. A comparison between the results of the 30- and 60-kg/m3 fibers shows that as the conventional reinforcement ratio increases, the standard deviations for the different mixtures approach each other.  相似文献   
8.
This DFG-funded research project aimed to gain a better understanding of the mechanisms of the W-Cl repair principle within the framework of fundamental investigations, to contribute to the creation of the necessary basis for a broader application of the repair principle in practice. The focus was on the development of a model to describe the chloride redistribution after the application of a system sealing surface protective coating. On the basis of Fick's second law of diffusion, a mathematical model with a self-contained analytical solution was developed, with the help of which the chloride redistribution after application of a system sealing surface protective coating can be calculated under the idealized assumption of complete water saturation of the concrete. Furthermore, the influence of the dehydration of the concrete, expected as a result of the application of the repair principle W-Cl, on the chloride redistribution was investigated. On the basis of laboratory tests and numerical simulations, material-specific reduction functions were developed to quantify the relationship between the chloride diffusion coefficient and the ambient humidity.  相似文献   
9.
Bottom pour ladles with stopper rod systems are commonly used in the metal casting industry. However, stopper rod bottom-pouring systems have not yet been developed for the lower thermal masses of alloys typically used in the investment casting industry. Large thermal masses used with bottom pour systems are typically limited for ladles larger than 700 kg and to certain alloys with higher fluidity and longer solidification time like cast iron, aluminum alloys etc. In this study, bottom pour ladle designs and low thermal mass refractory systems have been developed and evaluated in production investment foundry trials with 300 kg pouring ladle. The ladles system and pouring practices used will be described along with the results from the pouring trials for SS304 that represents typical alloys used in Investment casting industries. Optimization of the variables used in an experimentation using Genetic algorithm is also explained.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号